International Journal of Scientific & Engineering Research Volume 2, Issue 3, March-2011 1
ISSN 2229-5518

USENET: InternetNews Software, Security —
Needs and Goals

Monika Saxena, Praneet Saurabh, Bhupendra Verma

Abstract — Usenet is a distributed bulletin board system, built as a logical network on top of other networks and connections. By design,
messages resemble standard Internet electronic mail messages as defined in RFC822. The Usenet message format is described in
RFC1036. This defines some additional headers. It also limits the values of some of the standard headers as well as giving some of them
special semantics. Newsgroups are the classification system of Usenet. The required Newsgroups header specifies where a message, or
article, should be filed upon reception. In addition to InterNetNews, there are two major Usenet packages available for UNIX sites. All three
shares several common implementation details. USENET at first was built with effectively no security. There was limited auditing even to
detect abuse, let alone prevent it. Over time abusers came, and this meant in many cases that "privileged" functions had to be in some places
either shut down or "put on manual" at great administrative cost to admins. In some cases, actual security using digital signature was applied,
for newgroup messages (pgpverify), moderated groups (pgpmoose) and NoCem. PGP was commonly used because it is a widely distributed

standalone program capable of doing digital signature.

Keywords — Usenet, bulletin board, internet news software, newsgroups, internetnews architecture, usenet security

*

1 INTRODUCTION

Usenet is a distributed bulletin board system, built as a
logical network on top of other networks and
connections. By design, messages resemble standard
Internet electronic mail messages as defined in RFC822
[Crocker82]. The Usenet message format is described in
RFC1036 . This defines some additional headers. It also
limits the values of some of the standard headers as well
as giving some of them special semantics. Newsgroups
are the classification system of Usenet. [Adams87] The
required Newsgroups header specifies where a message,
or article, should be filed upon reception. Sites are free to
carry whatever [transliteral] groups they want. Most sites
carry the core set of so -called ““mainstream’
groups.There are currently about 730 of these groups, and
one or two new ones is created every week. Messages
generated at a site are sent to the site's “neighbors" who
process them and relay them to their neighbors, and so
on. Sites can be interconnected -- indeed, on the Internet,
this is quite common. See Figure

A

D

The Path header is used to prevent message loops. For
example, an article written at A could getsenttoB, D, C
, and then back to A. Before propagating an article, a site
pretends its own name to the Path header. Before
propagating an article to a site, the receiving host checks
to make sure that the site that would receive the article
does not appear in the Path line. For example, when the
article arrived at site C , the Path would contain AIB!D ,
so site C would know not to send the article to A.
Sites also keep a record of the Message -1D's of all articles
they currently have. If D receives an article from B, it will
reject the article if C offers it later. For self -protection,
most sites keep a record of recent articles that they no
longer have. This is very useful when another site dumps
a (usually quite large) batch of old news back out to
Usenet. For the past few years, the amount of data
generated by Usenet sites has been doubling every year.
A site that receives all the mainstream groups is receiving
over 17 megabytes a day spread out over 11,000 articles .
[Adams92] About 20% of the data is article headers, and
while all of them must be scanned only half of it is must
be processed by the Usenet software. The number of sites
participating in Usenet has been growing almost as
quickly. Based on articles his site receives and survey
data sent in by participating sites, Brian Reid estimates
that there are 36,000 sites with 1.4 million participants
[Reid91] . A ““sendsys" message to the “inet" distribution
in June of 1989 received about 200 replies in the first
twenty -four hours. A year later, nearly 700 replies were
received. (Sendsys is a special article that asks all

Figure 1: Small Usenet topology (all links are receiving sites to send back an email message, usually
two -way). without human intervention; by convention, inet is
IJSER © 2011

http://www.ijser.org


http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 2, Issue 3, March -2011 2

ISSN 2229-5518

primarily the set of sites on the Internet) [Adams87]
The NNTP protocol is defined in Internet RFC 977
[Kantor86] published in February, 1986. This was

accompanied by the general public release of a reference
implementation, also called “nntp." This has been the
only NNTP implementation that is generally available to
UNIX sites. [Adams87]

Usenet Software

In addition to Internet News, there are two major Usenet
packages available for UNIX sites. All three share several
common implementation details. A newsgroup name
such as comp.foo is mapped to a directory comp/foo
within a global spool directory. An article posted to a
group is assigned a unique increasing number based on a
file called the active file. If an article is posted to multiple
groups, links are used so that only one copy of the data is
kept. A sys file contains patterns describing what
newsgroups the site wishes to receive, and how articles
should be propagated. In most cases, this means that a
record of the article is written to a “batchfile" that is
processed off-line to do the actual sending.
The first Usenet package is called B News, also known as
B2.11. The B news model is very simple: the program
rnews is run to process each incoming article. Locking is
used to make sure that only one rnews process tries to
update the active file and history database. At one site
that received over 15,000 articles per day, the locking
would often fail so that 10 to 100 duplicates were not
uncommon. Because each article is handled by a separate
process, it is impossible to pre-calculate or cache any
useful data. More importantly, file 1/O had become a
major bottleneck. A site that feeds 10 other sites does over
150,000 open/append/close operations on its batchfiles. It
is generally agreed that B news cannot keep up with
current Usenet volume; it is no longer being maintained,
and its author has said more then once that the software
should be considered ““dead.” C News gets much better
performance then B news by processing articles in batches
[Collyer87] . The relaynews program is run several times a
day to process all the articles that have been received
since the last run. Since only one relaynews program is
running, it is not necessary to do fine-grain locking of any
of the supporting data files. More importantly, it can keep
the entire active and sys file in memory. It can also use
buffered 1/0 on its batchfiles, reducing the amount of
system calls by one or two orders of magnitude.
An alpha version of C News was released in October,
1987. Within four years it surpassed B news in popularity,

and there are now more sites running C News then ever
ran B news. From the beginning, the NNTP reference
implementation was layered on top of the existing Usenet
software: an article received from a remote NNTP peer
was written to a temporary file and the appropriate rnews
or relaynews program processed it. In order to avoid
processing an article the system already has, it first does a
lookup on the history database to see if the article exists.
It soon became apparent that invoking relaynews for every
article lost all of C News's speed gain, so the NNTP
package was changed to write a set of articles into a
batch, and offer the batch to relaynews. When articles
arrive faster then relaynews can process them, they must
be spooled. If two sites (B and C in the previous
examples) both offer a third site (D) the same article at the
““same time" then an extra copy will be spooled, only to
be rejected when it is processed, wasting disk space; this
problem multiplies as the number of incoming sites
increases.To alleviate this problem, most sites run Paul
Vixie's msgidd , a daemon that keeps a memory -resident
list of article Message -ID's offered within the last 24
hours. The NNTP server is modified so that it tells this
daemon all of the articles that it is handing to Usenet and
gueries the daemon before telling the remote site that it
needs the article. This is not a perfect solution -- if the
first, spooled, copy of the article is lost or corrupted, the
site will likely never be offered the article after the msgidd
cache entry has expired. Going further, msgidd is work -
around for a problem inherent in the current software
architecture.

Other problems, while not as severe, lead to the
conclusion that a new implementation of Usenet is
needed for Internet sites. For example:

e Since all articles are spooled, relaynews cannot tell
the NNTP server the ultimate disposition of the
article, and the server cannot tell its peer at the
other end of the wire. This hides transmission
problems. For example, a site tracing the
communication has no way of finding out an
article was rejected because the remote site does
not receive that particular set of newsgroups.

e The NNTP reference implementation is showing
signs of age. Maintaining the server is becoming
a maintenance nightmare; over one-tenth of its
6,800 lines are #ifdef related.

e All articles are written to disk at extra time. Disks
are getting bigger, but not faster, while CPU's,
memory, and networks are.

IJSER © 2011
http://www.ijser.org


http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 2, Issue 3, March -2011 3

ISSN 2229-5518
InterNetNews architecture

There are four key programs in the InterNetNews
package :

e Innd is the principal news server for incoming
newsfeeds;

e innxmit reads a file identifying articles and offers
them to another site;

e ctlinnd sends control commands to innd ;

e nnrpd is an NNTP server oriented
newsreaders.

for

Of these programs, the most important is innd. We first
mention enough of its architecture to give a context for
the other programs, and then discuss its design and
features in more detail at the end of this section.

Innd
daemon

Remote Feeds

/l_l Local News Readers

Client

Figure 2 : Innd architecture

Innd is a single daemon that receives all incoming articles,
files them, and queues them up for propagation. It waits
for connections on the NNTP port. When a connection is
received, a getpeername (2) is done. If the host is not in an
access file, then an nnrpd process is spawned with the
connection tied to its standard input and output. (Unlike
other implementations, no single [INN program
implements the entire NNTP protocol.) It is worth noting
that nnrpd is only about 3,500 lines of code, and 20% of
them are for the “POST" command, used to verify the
headers in a user's article. Nnrpd provides all NNTP
commands except for TIHAVE" and an incomplete
version of "NEWNEWS". On the other hand, it does
provide extensions for pattern -matching on an article
header and listing exactly what articles are in a group.
The NNTP protocol seems to be a good example of the

UNIX philosophy: it is small, general, and powerful and
can be implemented
Atrticles are usually forwarded by having innd record the
article in a “batchfile” which is processed by another
program. For Internet sites, the innxmit program is used
to offer articles to the host specified on its command line.
The input to innxmit is a set of lines containing a
pathname to the article and its Message -ID. Since the
Message -ID is in the batchfile, innxmit does not have to
open the article and scan it before offering the article to
the remote site. This can give significant savings if the
remote site already has a percentage of the articles.
Until recently, innxmit used writev to send its data to the
remote host. At start -up it filled a three - element struct
iovec array with the following elements:

in a very small program.

[O] { ll.ll, 1 };
[1] { placeholder };
[21{"™\r\n"}

To write a line, the placeholder was filled in with a pointer
to the buffer, and its length, and a single writev was done,
starting from either element zero or one. While this
implementation was clever, and simpler then what was
done elsewhere, it was not very fast. Innxmit now uses a
16k buffer and only does a write when the next line would
not fit. This is also consistent with ideas used throughout
the rest of INN: use the read and write system calls,
referencing the data out of large buffers while avoiding
the copying commonly done by the standard 1/0 library.
The ctlinnd program is used to tell the innd server to
perform special tasks. It does this by communicating over
a UNIX -domain datagram socket. The socket is behind a
firewall directory that is mode 770, so that only members
of the news administration group can send messages to it.
It is a very small program that parses the first parameter
in its command line and converts it to an internal
command identifier. This identifier and the remaining
parameters are sent to innd which processes the
command, and sends back a formatted reply. For
example, the following commands stops the server from
accepting any new connections, adds a newsgroup, and
then tells it to recompute the list of hosts that are
authorized newsfeeds: ctlinnd pause "Clearing out log
newgroup

files" ctlinnd

vixie@pa.dec.com

comp.sources.unix —m

IJSER © 2011
http://www.ijser.org


http://www.ijser.org/
mailto:vixie@pa.dec.com

International Journal of Scientific & Engineering Research, Volume 2, Issue 3, March -2011 4

ISSN 2229-5518
ctlinnd reload newsfeeds "Added OSF feed"

ctlinnd go ™

The text arguments are sent to syslog (8) for audit
purposes.

The most commonly -used ctlinnd command is ““flush."
This directs the server to close the batchfile that is open
for a site, and is typically used as follows:

mv batchfile batchfile.work
ctlinnd flush sitename
innxmit sitename batchfile.work

The flush command points out another difference
between INN and other Usenet software. The B News
inews program needed no external locking. Files were
opened and closed for a very short window, the time
needed to process one article. The C News relaynews
could be running for a longer period of time. The only
way to get access to a batchfile is to either lock the entire
news system, which is overkill for the desired task, or to
rename the file and wait until the original name shows up
The INN approach is more efficient and
conceptually cleaner.

again.

USENET SECURITY -- NEEDS

USENET at first was built with effectively no security.
Anybody, anywhere could introduce any article which
could do anything. There was limited auditing even to
detect abuse, let alone prevent it. Over time abusers came,
and this meant in many cases that "privileged" functions
had to be in some places either shut down or "put on
manual” at great administrative cost to admins. In some
cases, actual security using digital signature was applied,
for newgroup messages (pgpverify), moderated groups
(pgpmoose) and NoCem. PGP was commonly used
because it is a widely distributed standalone program
capable of doing digital signature.

Authority on USENET

USENET has no government. It is an anarchy -- the
absence of government -- but this does not mean total
chaos. It has rules, guidelines, traditions, movements and
principles of governance, if not government. USENET is,
in spite of its public nature, a privately owned network. It
is a cooperative, owned by the owners of the sites that are
on it. Nobody gets on the network or uses it without the

permission, directly or indirectly of these owners. In these
site owners lies all the authority on USENET. This makes
sense, as anything on USENET involves storing or
changing data on the site owner's machines. Those files
are theirs. Of course, having each individual site owner
privately administer all aspects of the net on their
machine would never work. There are over a few
hundred thousand machines on the net, serving millions
of users. So means to delegate administration have been
found. As noted, the first way to delegate it was to simply
let anybody do anything. In fact, at first anybody could
create a new newsgroup just by typing a new name. In
the past there were not many malicious users, so the
system worked.

Today we have malicious users. Both spammers and the
like who abuse for imagined gains, and plain sociopaths
like trollers and crackers who abuse the net or people on
it for the sake of abusing it. Barring malice, in the past we
still had politics -- different groups wanting different
things. To solve this various anarchic and pseudo-
democratic systems evolved to develop group consensus
or a measurement of group will, and everybody agreed,
without force, to go along with the group will where it
was important. One example was the newsgroup voting
system. This works because in fact to get anything done
in a co-op like USENET, you need the almost unanimous
consent of the site owners. Any site owner is free to not
participate in any group, hierarchy or other activity. So
you must keep them all happy if you want to do
something netwide. [Postel82] While total unanimity is
hard, near-unanimity, won through compromise, has
actually worked better than might be expected. This is
true in part because almost all of us are drilled from
childhood to accept the democratic principle and accept
things the majority wants so that we can get our way later
when we agree with the majority.

What needs to be secured?

Security on USENET amounts to the question, "Should
anybody and everybody be able to perform this action?"
If the answer is yes, you need no security. If no, you need
some security to divide those who you do wish to
perform the action from those who you don't. Security of
course has a cost, so sometimes you're willing to accept
letting anybody perform some action if the risk of that is
less than the bother of security. When the net was smaller,
and there were few malicious people about, security
wasn't necessary simply because even though anybody
could do certain things, they tended not to. [Postel82]

IJSER © 2011
http://www.ijser.org


http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 2, Issue 3, March -2011 5

ISSN 2229-5518
Now on USENET, the only "action" is the posting of an
article.

However, this gets broken down based on what the
headers of the article do, and in particular the Control
header on control messages. So while "post an article" is
not the unit you secure, you are interested in "post a
cancel” or "post an article in a moderated newsgroup."

Here is a list of the actions on USENET | believe most
people would prefer not be available to anybody and
everybody. As such, we must address how to secure
them.

Arbitrary users should not be able to:

1. Cancel an article they were not involved in
originating

2. Post an article identified as coming from
somebody else against that person's will.

3. Post to a moderated group without the
moderator's approval

4. Violate a newsgroup's policies on crossposting,
article size, mime-types, etc.

5. Machine post vast volumes of articles to one or
many groups

6. Create a group

7. Create or replace a named article with a specified
purpose

8. Change or set the status of a group

9. Issue a sendsys in the name of another, or
possibly any sendsys at all

10. Delete a group

11. Modify the headers or body of another's message

12. Block the propagation of another's message by
hijacking its message-id

13. Issue a checkgroups or
description

change a group

While there is some fine debate about some, and in some
cases these rules may vary in some hierarchies (for
example alt might allow any party to create a group) I
think that for the mainstream of USENET, ideally most
people would prefer these functions were not entirely
open. [Reid91]

Who can be trusted

If not all parties can be trusted to perform these actions,
who can or should be trusted? Well, that varies from
action to action. In some cases, like the cancel message,

everybody agrees the original poster of a message should
be trusted, and most agree the administrators of the
equipment used to insert the posting into the net should
be trusted as well. Many others wish to pick specific 3rd
parties and trust them, to deal with abuse. For other
functions it's more political. The actions themselves
require subjective judgement and must be performed by
individuals or groups who win the trust of the machine
owners who in turn grant it. It turns out that the vast
majority of people on USENET can be trusted, at at least
given the benefit of the doubt, with their trust revoked
only after it is abused. That's how the net used to work,
but there was no way to revoke the trust when people
started abusing. The answers as to who people want to
trust to perform these actions are varied and many. The
underlying security system has to allow people to create
the various structures of trust and enabling that they
desire.

System Goals

Delegation

It's vital that all trust be easily delegated. Site admins
don't want to worry about the administrative problems of
newsgroups or other small subsets of the net. They want
to examine the big picture at best, and sometimes no
picture at all. Most would like to just leave things to
work, and only deal with problems if problems occur that
are big enough to reach their attention. The delegation
itself must be secure.

Synchronization

In addition, secure delegation is the only way that
cooperation on USENET can work. If each site tunes its
own parameters for a newsgroup independently, either
by deliberate will or more commonly just by accident,
then the group starts being useful to none. All sites have
to be reasonably in sync -- the near unanimity -- about
how most components of the net work. You can't have a
third of the sites thinking a group is moderated with one
moderator, another third naming a different moderator
and the other third thinking the group is unmoderated.
The group becomes damaged for everybody.

Extensibility

While I've listed common things we want to secure today,
it is certain that other things will come up. New control
messages or headers. New newsgroup policies and ways

IJSER © 2011
http://www.ijser.org


http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 2, Issue 3, March -2011 6

ISSN 2229-5518
to run newsgroups. Good software design insists that

there be one system -- since this is complex enough as it is

-- and that it be general and extensible, just like the other
facets of USENET are.

Security

Good security is of course secure. Once you have a
general security system, you don't leave things unsecured
without an explicit reason for doing so. Sadly, when you
have malicious attackers, if you close one security hole
they just move to the next. You must close all the holes
they will try. This is usually not totally possible, but one
tries to get as close as possible to the goal as one can.

Anarchic

Unlike most systems, a security system for USENET has
to factor in its anarchic nature. Authority remains with
site admins, you can never prevent that. However, the
system must allow people to work together, to cooperate
and compromise as they see fit. Security becomes a
tradeoff between the burdens of complexity of security
and cooperation and the risks of insecurity. [Reid91]

Conclusions and Comparisons

The InterNetNews architecture works. Profiling a
production installation for 24 hours showed that open (2)
accounted for 10% of the run time. Since the server only
does one open (2) per article, it is not clear if any other
performance tuning is needed. The profiling overhead
accounted for 5% of the
Several optimizations are available because there is only
one process, and because it is always running. For
example, avoiding duplicates is an integral part of the
server. If a second site offers an article while a first site is
sending it, the NNTP code will put the channel to ““sleep”
for a short while before replying to the second offer. This
is usually enough time to have the first site finish sending
the article, reducing the number of duplicates from
hundreds to nearly none, with no external programs.
Since the server is always running, the system has a much
smoother performance curve. As a result, it *“feels" much
faster to users. Another unexpected benefit is that articles
are accepted or rejected synchronously. A user can post

run-time.

an article, and by the time their posting agent has
returned, it has been written to the spool directory and
gueued for remote transfer. If there is a problem such as
having an illegal newsgroup specified, the user founds
out immediately. The design of the server seems to be
very good, split into abstractions that are very
independent. For example, sites have no knowledge of
incoming NNTP connections. Using callbacks lets each
portion of the server safely do I/0 without worrying that
it might affect other parts. Much of the Usenet processing
becomes trivial when serialized, such as access to the
history file. The design has also led to a fairly small
program: it is under 13,000 lines, and about 20% of them
are comments. This compares favorable to the 7,400 lines
in the equivalent C News program and the 7,600 lines in
the NNTP reference implementation. [Reid91]

References

1]. [Crocker82] David H. Crocker, Standard for the Format
of ARPA Internet Text Messages , Request For Comments

822, Marina del Rey, CA: Information Sciences Institute,
1982.

2.]J[Adams87] Rick Adams, Mark Horton, Standard for

Interchange of USENET Messages , Request For Comments
1036, Marina del Rey, CA: Information Sciences Institute,
1987.

3] [Adams92] Rick Adams, Total traffic through uunet for
thelast2weeksUsenetmessage<1992Apr8.193050.8963@uune
t.uu.net> in news.lists , April, 1992

41 [Collyer87] Geoff Collyer and Henry Spencer, News
Need not be Slow , Usenix Winter Conference, 1987.

5] [Kantor86] Brian Kantor, Phil Lapsley, Network News
Transfer Protocol: A Proposed Standard for the Stream -
Based Transmission of News , Request for Comments 977,
Marina del Rey, CA: Information Sciences Institute, 1986.
6] [Postel82] Jonathan B. Postel, Simple Mail Transfer
Protocol , Request For Comments 821, Marina del Rey,
CA: Information Sciences Institute, 1982.

7] [Reid91] Brian Reid, Usenet Readership Summary Report
for May 91, Usenet message<1991Jun2.141124.12753
@pa.dec.com

IJSER © 2011
http://www.ijser.org


http://www.ijser.org/

